Science

Carbon Sinks: Where is Carbon Stored?

Carbon is stored naturally and safely for decades to millennia in various locations, such as trees, soil, and rocks. Carbon is transferred between these so-called sinks and the atmosphere through a series of processes called the carbon cycle. These sinks are critical to keep the balance of carbon dioxide in the atmosphere, which has been upset by climate change. Utilising these natural storage locations is an essential element of carbon removal solutions.

Sita Bates

Forest and Nature Management Specialist

Kathryn Flynn

Sustainability Specialist

What is a carbon sink?

A carbon sink is a natural reservoir that absorbs more carbon than it releases, playing a crucial role in maintaining manageable levels of CO2 in the atmosphere. These different locations vary in how long carbon is stored, from years to millennia, called durability or permanence. Each sink has a vital function in the cycle of carbon.

Klimate works with nine different carbon removal methods (and counting) which sequester and store carbon in different sinks.

Waves crashing on rocks

Where is carbon stored naturally?

Natural carbon sinks, such as forests, oceans, and soil, absorb a significant amount of carbon from the atmosphere—about 50% of all human-induced emissions. The world's forests alone absorb 2.6 billion tonnes of CO2 each year.

How are natural sinks used in carbon dioxide removal?

All methods of carbon removal utilise natural carbon sinks in some way. Even engineered methods utilise geological storage systems. The table below describes several important carbon sinks and how they are utilised by removal methods.

Types of carbon sink How they store carbon Permanence range Klimate's methods
Land (forests, grasslands & soils) Tree and other plants take up carbon through photosynthesis, storing it in their biomass.

Once plants die, this carbon is stored in soil via decompisition.

Carbon can also be stored long-term in timber used for building.
Decades - centures.

10s-100s of years
Forestation, soil sequestration, biochar
Oceans Phytoplankton and other forms of marine life take up carbon via photosynthesis, similarly to plants.

When they die, this carbon sinks to the ocean floor, where it is stored for the long term in seabed sediments.
Centuries - millenia

100s-1000s of years
Ocean blue carbon, coastal blue carbon, enhanced weathering.
Geological formations Geological formations like volcanic rocks and underground saline formations are also key carbon storage sites.

Engineered carbon removal methods are able to pressurise CO2 into liquid form, which can then be injected into basins of porous rock deep underground.
Millenia - epochs

>10,000 years
Bio-oil, bio-energy with carbon capture and storage (BECCS), direct air capture (DACCS).

Challenges of emissions and land use change

Rising greenhouse gas emissions are upsetting the balance of the carbon cycle, leading to a situation where carbon sinks are unable to absorb all the carbon being released.

Simultaneously, more and more land is being converted for urbanisation and agriculture. This often involves disturbances, like deforestation, that release carbon already stored in the land, while preventing it from sequestering any further emissions.

This poses a significant challenge, as the importance of carbon sinks in tackling climate change has never been greater.

Currently the EU's land use sector is actually a net carbon sink, meaning it absorbs more carbon that it releases. On a global scale, however, the opposite is happening.

Which carbon sinks are most important for CO2 removal efforts?

There is no doubt that preserving and expanding natural carbon sinks should be a priority. They have strong co-benefits for biodiversity and are deployable now, creating rapid carbon uptake and safe storage in the short term. At the same time, geological carbon sinks which can be accessed through engineered solutions are highly permanent and hold huge potential to accelerate carbon removal.

Waves crashing on rocks

These solutions are essential to mitigate carbon emissions and ensure the stability of the global climate. At Klimate, we aim to drive balanced investments into nature-based solutions alongside technology-driven removals that demonstrate high integrity and scaling potential.

Further reading

Sita Bates

Forest and Nature Management Specialist

Sita currently studies an MS in Forest and Nature Management at the University of Copenhagen. She has experience in digital marketing for carbon markets as well as environmental journalism, bringing this expertise to author technical and market-based topics.

Kathryn Flynn

Sustainability Specialist

Kathryn has a MSc in Climate Change from the University of Copenhagen specialising in climate policy and sustainability. She has experience in science communications and impact reporting, placing her expertise in between climate change and communications. A self-proclaimed geopolitics nerd, Kathryn uses this knowledge to track and brief our community on news and updates in and around the carbon removal space.

Related insights

Discover the news shaping the future of carbon removal.

Science
all

What is carbon removal?

February 13, 2023
·
3 min

Heading 1

Heading 2

Heading 3

Heading 4

Heading 5
Heading 6

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.

Block quote

Ordered list

  1. Item 1
  2. Item 2
  3. Item 3

Unordered list

  • Item A
  • Item B
  • Item C

Text link

Bold text

Emphasis

Superscript

Subscript

Science
all

Why invest in both long and short term carbon removal solutions?

January 8, 2024
·
3 min

Heading 1

Heading 2

Heading 3

Heading 4

Heading 5
Heading 6

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.

Block quote

Ordered list

  1. Item 1
  2. Item 2
  3. Item 3

Unordered list

  • Item A
  • Item B
  • Item C

Text link

Bold text

Emphasis

Superscript

Subscript

Science
all

Understanding carbon offsets: The difference between avoidance and removal credits

October 2, 2023
·
2 min

Heading 1

Heading 2

Heading 3

Heading 4

Heading 5
Heading 6

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.

Block quote

Ordered list

  1. Item 1
  2. Item 2
  3. Item 3

Unordered list

  • Item A
  • Item B
  • Item C

Text link

Bold text

Emphasis

Superscript

Subscript

View all insights
Stay in touch

Sign up for Klimate Insights

Every second month we'll send you an update on all things Klimate, carbon removal, and the most important emerging news and policy.

Got it! You're on the list. Check your inbox for a confirmation from us.
Oops! Something went wrong while submitting the form.
Book a consultation

Talk to a carbon removal strategist

Finding the right way to remove your CO₂ emissions can seem overwhelming. Our team is here to help. Book a meeting to walk through how our solution might fit your needs.

Thank you! Your submission has been received and someone from our team will be in touch soon.
Oops! Something went wrong while submitting the form.